A COMBINATORIAL DECOMPOSITION OF SIMPLICIAL COMPLEXES

BY

ART M. DUVAL

Department of Mathematical Sciences University of Texas at El Paso El Paso, TX 79968-0514, USA e-mail: artduval@math.ep.utexas.edu

ABSTRACT

We find a decomposition of simplicial complexes that implies and sharpens the characterization (due to Björner and Kalai) of the f-vector and Betti numbers of a simplicial complex. It generalizes a result of Stanley, who proved the acyclic case, and settles a conjecture of Stanley and Kalai.

1. Introduction

Let Δ be a finite (abstract) simplicial complex on vertex set $V = \{x_1, \ldots, x_n\}$ (i.e., Δ is a collection of subsets of V such that: $V \subseteq \Delta$; and, if $F \subseteq G$ and $G \in \Delta$, then $F \in \Delta$). Let the **dimension** of $F \in \Delta$ be dim $F = |F| - 1$, and the dimension of Δ be dim $\Delta = \max\{\dim F: F \in \Delta\}$. Also let $d = 1 + \dim \Delta$, so the largest face of Δ has d vertices. Let $f_i = f_i(\Delta) = #\{F \in \Delta: \dim F = i\}.$ In particular, $f_{-1} = 1$ for the empty set (unless $\Delta = \emptyset$), f_0 counts the vertices of Δ , and $f_i = 0$ for $i \geq d$. The f-vector of Δ is $f(\Delta) = (f_0, \ldots, f_{d-1})$. The same notion of $f_i(\Delta)$ and the f-vector will apply in this paper to every finite collection of sets.

For a simplicial complex Δ , $\tilde{\beta}_i(\Delta) = \dim_K \tilde{H}^i(\Delta; K)$ will denote the *i*th (reduced) Betti number of Δ with respect to a fixed field of coefficients K,

Received October 21, 1992

where $\tilde{H}^i(\Delta; K)$ is the *i*th reduced cohomology group of Δ with respect to K. The Betti sequence of Δ is $\tilde{\beta}(\Delta) = (\tilde{\beta}_0,\ldots,\tilde{\beta}_{d-1}).$

Our main result is the following combinatorial decomposition theorem for simplicial complexes.

THEOREM 1.1: Any (finite) simplicial complex Δ can be written as a disjoint *union* $\Delta = \Delta' \cup B \cup \Omega$, where:

- (a) Δ' is a subcomplex of Δ ;
- (b) $f_i(B) = \tilde{\beta}_i(\Delta)$ and B is an antichain;
- (c) $\Delta' \cup B$ is a subcomplex of Δ ; and
- (d) there exists a bijection $\eta: \Delta' \to \Omega$ such that for all $F \in \Delta'$ we have $F \subset \eta(F)$ and $|\eta(F) - F| = 1$.

Theorem 1.1 implies the complete characterization of f-vectors for simplicial complexes with prescribed Betti numbers, which was proved by Bj6rner and Kalai [BK1]. It sharpens and generalizes results by Stanley [St3, Theorem 1.2] and Proposition 2.1] (who proved this result for acyclic simplicial complexes and a weaker result for general simplicial complexes), and settles a conjecture made by Kalai and Stanley [St3, Conjecture 2.2].

Combinatorial decomposition theorems which sharpen extremal combinatorial results are of great interest in combinatorics. A famous example is the decomposition of the Boolean lattice to symmetric antichains. This decomposition implies Sperner's theorem on the size of the largest antichain [GK1]. Another example is an important conjecture made (separately) by Garsia [Ga, Remark 5.2] and Stanley [St2, p. 149], which asserts that every d-dimensional Cohen-Macaulay simplicial complex Δ can be written as a disjoint union of intervals [S, T] so that $\dim T = d$. This conjecture would sharpen Stanley's result that the h-vector of Δ is nonnegative [St1, Corollary 4.3].

In Section 2 we will describe the Kruskal-Katona theorem, which gives a description of f-vectors of simplicial complexes, the Björner-Kalai theorem, which gives a similar description for the case where the Betti numbers are prescribed, and we will show how Theorem 1.1 implies the Björner-Kalai theorem. The proof of Theorem 1.1 is given in Section 3.

2. f-vectors

The f-vector has been characterized for many subclasses of simplicial complexes,

and for many generalizations of simplicial complexes. See [Bj] for a survey and extensive bibliography.

For simplicial complexes, the characterization is given by the Kruskal-Katona theorem [Kr, Kat], using the following peculiar function: Given an integer $k \geq 1$, any integer $n \geq 1$ can be written uniquely in the form

$$
n = \binom{a_k}{k} + \binom{a_{k-1}}{k-1} + \dots + \binom{a_i}{i}
$$

such that $a_k > \cdots > a_i \geq i > 0$. Define

$$
\partial_{k-1}(n) = \binom{a_k}{k-1} + \binom{a_{k-1}}{k-2} + \cdots + \binom{a_i}{i-1}.
$$

The function ∂_k has the following combinatorial interpretation (see [GK2, Section 8] or [BK1, Section 2]): Define the **antilexicographic ordering** \leq_{AL} on ksubsets (subsets whose cardinality is k) of V as follows. Arbitrarily order the vertices of V as $x_1 < \cdots < x_n$. Say $S = \{x_{i_1} < \cdots < x_{i_k}\}\$ and $T = \{x_{j_1} < \cdots < x_{j_k}\}\$ x_{i_k} are two k-subsets; then $S \lt_{AL} T$ if, for some q, we have $i_q \lt j_q$ and $i_p = j_p$ for $p > q$. A collection C of k-subsets of V is **compressed** if $S \leq_{AL} T$ and $T \in C$ imply $S \in C$. Since \leq_{AL} is a total ordering, there is only one compressed collection of k-subsets of size n; call it I_k^n . The **shadow** of any collection C of k -subsets is

$$
\partial C = \{ S : |S| = k - 1, S \subset T \text{ for some } T \in C \}.
$$

Then ∂I_k^n is also compressed, and $|\partial I_k^n| = \partial_{k-1}(n)$.

THEOREM 2.1 (Kruskal-Katona [Kr, Kat]): *For* $f = (f_0, \ldots, f_{d-1})$ *, the following* are *equivalent:*

- (a) *f is* the *f-vector of a simplicial complex; and*
- (b) $\partial_k(f_k) \leq f_{k-1}$, for all $k \geq 1$.

Proof: The simplest proofs are due to Daykin [Da] and Frankl [Fr].

For further uses and generalizations of the Kruskal-Katona theorem and compression, see [GK2, Section 8].

Björner and Kalai improved upon the Kruskal-Katona theorem by characterizing the f-vector of a simplicial complex with prescribed Betti numbers. The characterization utilizes near-cones.

Definition: A near-cone is a simplicial complex Δ containing a vertex v_0 (called

the apex) with the following property: For any face $F \in \Delta$, if $v_0 \notin F$ and $w \in F$ then

$$
(F - \{w\}) \cup \{v_0\} \in \Delta.
$$

For any near-cone Δ with apex v_0 , let

$$
B(\Delta) = \{ F \in \Delta \colon F \cup \{v_0\} \notin \Delta \},\
$$

and let

$$
\Delta' = \{ F \in \Delta : v_0 \notin F, F \cup \{v_0\} \in \Delta \};
$$

then

$$
\Delta=(v_0*\Delta')\,\dot\cup\, B(\Delta),
$$

where * denotes topological join (so $v_0 * \Delta' = \Delta' \cup \{\{v_0\} \cup F : F \in \Delta'\}\)$. Both Δ' and $\Delta' \cup B(\Delta)$ are subcomplexes of Δ . In the case $B(\Delta) = \emptyset$, Δ is a cone. Every $F \in B(\Delta)$ is maximal in Δ , so the collection of subsets in $B(\Delta)$ forms an antichain. Further, $f_i(B(\Delta)) = \tilde{\beta}_i(\Delta)$, which follows by the topological process of contracting all the faces of Δ not in $B(\Delta)$ to the apex, leaving a sphere for every face in $B(\Delta)$.

THEOREM 2.2 (Björner-Kalai [BK1, Theorem 1.1]):

For $f = (f_0, \ldots, f_{d-1}), \tilde{\beta} = (\tilde{\beta}_0, \ldots, \tilde{\beta}_{d-1}),$ the following are equivalent:

- (a) there is a simplicial complex Δ such that $f = f(\Delta)$ and $\tilde{\beta} = \tilde{\beta}(\Delta)$ (for an *arbitrary field K);*
- (b) *f is the f-vector of a simplicial complex having the homotopy type of a* wedge of, for each *i*, $\tilde{\beta}_i$ spheres of dimension *i*;
- (c) *f* is the *f*-vector of a near-cone Δ such that $f_i(B(\Delta)) = \tilde{\beta}_i$;
- (d) *let* $\chi_{k-1} = \sum_{j\geq k} (-1)^{j-k} (f_j \tilde{\beta}_j)$ for $k \geq 0$; then

$$
\chi_{-1}=1, \quad \text{and} \quad
$$

(1)
$$
\partial_k(\chi_k+\tilde{\beta}_k)\leq \chi_{k-1} \quad \text{for all } k\geq 1.
$$

An interpretation of equation (1) is

$$
\partial_k(\dim Z_k)\leq \dim B_{k-1},
$$

where Z_k is the space of k-dimensional cycles ($\{z: \partial z = 0\}$) and B_{k-1} is the space of $(k-1)$ -dimensional boundaries $({b: b = \partial y \text{ for some } y})$. It is also not hard to see that $\chi_k = f_k(\Delta')$ and $\chi_k + \tilde{\beta}_k = f_k(\Delta' \cup B)$, where the near-cone in 2.2(c) is $\Delta = (v_0 * \Delta') \cup B$.

Proof: $(c) \Rightarrow (d)$ is a straightforward combinatorial argument which utilizes the Kruskal-Katona theorem.

- $(d) \Rightarrow (c)$ is the direct construction of an appropriate near-cone.
- $(c) \Rightarrow (b)$ follows by remarks following the definition of near-cone.
- $(b) \Rightarrow (a)$ is clear.

It only remains to show (a) \Rightarrow (c). Apply the *algebraic shifting* operation to Δ to obtain a new simplicial complex, Δ^* . This operation has the remarkable property that $f(\Delta) = f(\Delta^*)$ and $\tilde{\beta}(\Delta) = \tilde{\beta}(\Delta^*)$, even though almost no other structure of Δ is preserved. Furthermore, Δ^* is a near-cone, which proves the claim. There is no elementary way of describing Δ^* in terms of Δ .

Björner and Kalai [BK2] generalized this result to polyhedral complexes with a proof by induction that avoids algebraic shifting altogether.

Theorem 1.1 provides a simpler proof of the key step $((a) \Rightarrow (c))$ of the Björner-Kalai theorem, by constructing, for any simplicial complex Δ , a near-cone with the same f-vector and Betti numbers as Δ .

Alternate proof of (a) \Rightarrow *(c):* Using the decomposition $\Delta = \Delta' \cup B \cup \Omega$ of Theorem 1.1, let $\Delta^* = (v_0 * \Delta') \cup B$. It follows immediately that Δ^* is a nearcone, since Δ' and $\Delta' \cup B$ are subcomplexes and B is an antichain. Also, Δ^* has the same Betti numbers as Δ , since $\tilde{\beta}_i(\Delta^*) = f_i(B) = \tilde{\beta}_i(\Delta)$. Finally, Δ^* has the same f-vector as Δ because every face $\eta(F) \in \Omega$ is just replaced by $(v_0 * F) \in (v_0 * \Delta') - \Delta'$, which doesn't change the f-vector, since $|\eta(F) - F| = 1$.

Note that any near-cone $(v_0 * \Delta') \cup B$ trivially satisfies Theorem 1.1 with $\eta(F) = \{v_0\} \cup F.$

3. Proof of the main theorem

Let Γ be a directed graph with vertex set V. A matching of $A, B \subseteq V$ in Γ is a collection of edges such that each edge is directed from a vertex in A to a vertex in B, and such that every vertex is incident to exactly one of the edges.

The acyclic version $(\text{im } \phi = \text{ker } \phi)$ of the following result is [St3, Lemma 1.1].

LEMMA 3.1: Let F be a *directed* graph *on the n-element vertex set X, and let KX be the K-vector space with basis X. Suppose there is a linear transformation* $\phi: KX \to KX$ satisfying

(a) if $x \in X$, then

$$
\phi(x) \in \mathrm{span}_K \{ y \in X : (x, y) \text{ is an edge of } \Gamma \};
$$

and

(b) im $\phi \subseteq \ker \phi$ (i.e., $\phi^2 = 0$).

Also assume that Y is a subset of X whose image in $KX/(\text{im }\phi)$ is a basis for $KX/(\text{im }\phi)$ and that Z is a subset of Y whose image in $KX/(\text{ker }\phi)$ is a basis for $KX/(\ker \phi)$. Then there is a matching of Z and $X - Y$ in Γ .

Proof: Since for any $\phi: KX \to KX$ we have $\dim(\ker \phi) + \dim(\dim \phi) = n$, it follows $|Z| = n - \dim(\ker \phi) = \dim(\operatorname{im} \phi) = |X - Y|$. By the Marriage Theorem (e.g., [Ry, Ch.5, Thm. 1.1]), it suffices to show that for any $S \subseteq Z$, say with $|S| = k$, there are (at least) k vertices $y_1, \ldots, y_k \in X - Y$ such that for each $1 \leq i \leq k$ there is an $x \in S$ with (x, y_i) an edge of Γ . Suppose not. Let $S = \{x_1, \ldots, x_k\}$. Then $\phi(x_1), \ldots, \phi(x_k)$ are linearly dependent in KX/KY , since they are all in the span of fewer than k vertices of $X - Y$. Thus some linear combination $x = a_1\phi(x_1) + \cdots + a_k\phi(x_k)$ is in *KY* ($a_i \in K$, not all $a_i = 0$). Since *Y* is a basis for $KX/(\text{im }\phi)$ and $x = \phi(a_1x_1 + \cdots + a_kx_k) \in \text{im }\phi$, it follows that x must be 0, so $a_1x_1 + \cdots + a_kx_k \in \text{ker }\phi$. But x_1, \ldots, x_k are linearly independent modulo ker ϕ , and hence all $a_i = 0$, a contradiction.

Definition: Let Λ (KV) denote the exterior algebra of the vector space KV ; it has a K-vector space basis consisting of all the monomials $x^F := x_{i_1} \wedge \cdots \wedge x_{i_k}$ where $F = \{x_{i_1}, \ldots, x_{i_k}\} \subseteq V$. Let I_{Δ} be the ideal of $\Lambda(KV)$ generated by all ${x^F: F \notin \Delta}$. The quotient algebra $\Lambda[\Delta] := \Lambda(KV)/I_{\Delta}$ is called the exterior face ring of Δ (over K). A K-vector space basis of $\Lambda[\Delta]$ is the set of all face monomials x^F where $F \in \Delta$; it follows that $f_i(\Delta) = \dim_K(\Lambda[\Delta]_i)$. The coboundary operator $\delta: \Lambda[\Delta] \to \Lambda[\Delta]$ is then simply right multiplication by $v = x_1 + \cdots + x_n \in \Lambda[\Delta],$ i.e., $\delta y = y \wedge v$.

Let $\langle \cdot, \cdot \rangle$ be the inner product on $\Lambda(KV)$ such that the set of face monomials forms an orthonormal basis of $\Lambda[\Delta]$. Define the left interior product $L: \Lambda^d V \times \Lambda^{k+d} V \to \Lambda^k V$ by

$$
\langle u, g \mathop{\llcorner} f \rangle = \langle u \wedge g, f \rangle \quad \forall u \in \Lambda V;
$$

then

$$
x^F \mathsf{L} x^G = \left\{ \begin{array}{ll} \pm x^{G-F} & \text{if } F \subseteq G \\ 0 & \text{otherwise,} \end{array} \right.
$$

and the boundary operator $\partial: \Lambda[\Delta] \to \Lambda[\Delta]$ is L-multiplication on the left by v, i.e., $\partial y = v \cup y$. This last observation also follows from ∂ and δ being adjoint with respect to $\langle \cdot, \cdot \rangle$, i.e.,

$$
\langle u, \partial f \rangle = \langle \delta u, f \rangle
$$

for any $u \in \Lambda[\Delta]_i$, $f \in \Lambda[\Delta]_{i+1}$.

Homology and cohomology are thereby reduced to exterior algebra; this idea was introduced by Kalai [Kal].

LEMMA 3.2: Let Δ be any simplicial complex with simplicial coboundary op*erator* δ : $\Lambda[\Delta] \to \Lambda[\Delta]$. *If k* \in *ker* δ *and* x_j *is a vertex of* Δ *, then k* $\Lambda x_j \in \text{im } \delta$.

Proof: Expand k as

$$
k = \sum_{F \in \Delta} c_F x^F
$$

with $c_F \in K$ (some of the c_F may be 0), and then let

$$
k_1 = \sum_{F:\ x_j \in F} c_F x^F
$$

and

$$
k_2 = \sum_{F:\ x_j \notin F} c_F x^F.
$$

Then $k=k_1+k_2$ and $k_1 \wedge x_j=0$, so

$$
k \wedge x_j = k_2 \wedge x_j.
$$

Also, since $k \in \text{ker} \delta$, we have $0 = \delta k = k \wedge v = k_1 \wedge v + k_2 \wedge v$, so

$$
k_1 \wedge v = -k_2 \wedge v.
$$

We will show that $k \wedge x_j = -k_1 \wedge v \in \text{im } \delta$ by showing that

(2)
$$
\langle (k \wedge x_j) + (k_1 \wedge v), x^F \rangle = 0 \text{ for any } F \in \Delta.
$$

Since both x_j and k_1 are multiples of x_j , equation (2) is clear if $x_j \notin F$. Other wise,

$$
\langle (k \wedge x_j) + (k_1 \wedge v), x^F \rangle = \langle (k_2 \wedge x_j) - (k_2 \wedge v), x^F \rangle
$$

= $\langle k_2 \wedge (x_j - v), x^F \rangle$
= 0

because x_i divides x^F , but not any term of k_2 nor $x_i - v$.

Björner and Kalai proved a similar result with a much more intuitive, topological proof. Let $\text{lk } F := \{ G \in \Delta : G \cap F = \emptyset, G \cup F \in \Delta \}$ and $\text{st } F :=$ $\{G \in \Delta: G \cup F \in \Delta\}$ denote the link and star of F, respectively.

REMARK 3.3 (Björner-Kalai [BK1, Remark 4.4]): *For every* $x_i \in V$, if $k \in$ ker ∂ , then x_i , L $k \in \text{im } \partial$.

Proof. First, $x_j L k \in \text{ker } \partial$, and $x_j L k \in x_j L \Lambda[\Delta] = \Lambda[\text{lk } x_j] \subseteq \Lambda[\text{st } x_j]$. But st x_i is acyclic (being a cone with apex x_i) and $(\partial | \text{st } x_i)(y) = \partial y$ for $y \in \text{st } x_i$, so x_i L $k \in \text{ker}(\partial \mid \text{st } x_i) = \text{im }(\partial \mid \text{st } x_i) \subseteq \text{im }\partial.$

This proof does not carry over to Lemma 3.2 since $(\delta | \text{st } x_i)(y) \neq \delta y$ for $y \in$ $\ln x_i \subseteq$ st x_i . It would be very nice to find a proof of Lemma 3.2 in the spirit of the proof of Remark 3.3.

We are now ready to prove Theorem 1.1. The proof follows the outline of Stanley's proof [St3, Theorem 1.2] of the acyclic case $(\tilde{\beta}_i = 0)$.

Proof of Theorem 1.1: Define the lexicographic ordering \leq_L on k-subsets of V as follows. Say $S = \{x_{i_1} < \cdots < x_{i_k}\}\$ and $T = \{x_{j_1} < \cdots < x_{j_k}\}\$ are two k-subsets; then $S \lt_L T$ if, for some q, we have $i_q \lt j_q$ and $i_p = j_p$ for $p \lt q$. Consider the quotient spaces $Q = \Lambda[\Delta]/(\ker \delta)$, and $R = \Lambda[\Delta]/(\mathrm{im} \delta)$. Let L be the lexicographically least basis of Q consisting of face monomials x^F , with respect to the ordering $x_1 \leq \cdots \leq x_n$ of the vertices of Δ , and let M be the lexicographically least set of face monomials such that $L \cup M$ is a basis of R. Thus, if $F \in \Delta$, then $x^F \notin L$ if and only if

(3)
$$
x^F = a_1 x^{F_1} + \cdots + a_t x^{F_t} + k,
$$

where $k \in \text{ker } \delta$, i.e., $k \wedge v = 0$, and, for each i, we have $a_i \in K$, $F_i \in \Delta$, and $F_i \lt_L F$. Similarly, if $F \in \Delta$, then $x^F \notin L \cup M$ if and only if

(4)
$$
x^{F} = a_{1}x^{F_{1}} + \cdots + a_{t}x^{F_{t}} + (y \wedge v),
$$

where $y \in \Lambda[\Delta]$ and, for each i, we have $a_i \in K$, $F_i \in \Delta$, and $F_i \lt_L F$. Finally, let $\Delta' = \{F : x^F \in L\}$ and $B = \{F : x^F \in M\}.$

First we show that Δ' is a subcomplex. Suppose $x^F \notin L$ and $F \subset G$. We need to show that $x^G \notin L$. Multiply equation (3) on the left by x^{G-F} . First note that $x^{G-F} \wedge k \in \text{ker } \delta$ since ker δ is an ideal. Further, in $\Lambda[\Delta]$ we have $x^{G-F} \wedge x^{F_i} =$

 $\pm x^{(G-F)\cup F_i}$ (or 0 if $(G-F)\cap F_i\neq \emptyset$), and $(G-F)\cup F_i\lt_L (G-F)\cup F=G$, so equation (3) gives $x^G \notin L$. Thus Δ' is a subcomplex. Similarly, $\Delta' \cup B$ is a subcomplex.

Now let Γ be the directed graph whose vertex set is Δ , and whose edges are the pairs (F, G) with $F \subset G \in \Delta$ and $|G - F| = 1$. Define $\phi: K\Delta \to K\Delta$ by $\phi = \delta$. By definition of the coboundary operator, ϕ satisfies all the conditions of Lemma 3.1. We can take $Z = \Delta'$ and $Y = \Delta' \cup B$ in Lemma 3.1 by the definitions of Δ' and B, and thus there is a matching $\eta: \Delta' \to \Delta - (\Delta' \cup B) = \Omega$ satisfying the conditions in (d).

Finally, we prove (b). By construction, $f_i(B) = \tilde{\beta}_i(\Delta)$. To show that B is an antichain, suppose that $x^F \in M$ and $F \subset G$. We need to show that $x^G \notin M$. Let $x_i \in G - F$, and let $F' = G - \{x_i\}$. Since Δ' is a subcomplex and $F \notin \Delta'$, it follows that $F' \not\in \Delta'$ also, so $x^{F'} \not\in L$ and

$$
x^{F'} = \sum_{i=1}^t a_i x^{F_i} + k,
$$

where $k \in \text{ker } \delta$, $a_i \in K$, and $F_i \lt_L F'$.

Thus,

$$
x^G = \pm (x^{F'} \wedge x_j)
$$

=
$$
\pm \Big(\sum_{i=1}^t a_i x^{F_i} \wedge x_j \Big) + (k \wedge x_j)
$$

=
$$
\Big(\sum_{\substack{F_i \cup \{x_j\} \in \Delta \\ x_j \notin F_i}} \pm a_i x^{F_i \cup \{x_j\}} \Big) + (k \wedge x_j).
$$

Now

$$
F_i \cup \{x_j\} <_{L} F' \cup \{x_j\} = G,
$$

and $k \wedge x_i \in \text{im } \delta$ by Lemma 3.2, so it follows from equation (4) that $x^G \notin M$. **I**

ACKNOWLEDGEMENT: I am grateful to Richard Stanley for introducing this problem to me, and to Gil Kalai for suggesting valuable improvements in the presentation.

References

- [Bi] A. Björner, *Face numbers of complexes and polytopes*, in *Proc. Int. Congress of Math., Berkeley, 1986,* pp. 1408-1418.
- [BK1] A. Björner and G. Kalai, An extended Euler-Poincaré theorem, Acta Math. 161 (1988), 279-303.
- [BK2] A. Björner and G. Kalai, *Extended Euler-Poincaré relations for cell complexes*, in *Applied Geometry* and *Discrete Mathematics: The Victor Klee Festschrift* (P. Gritzmann and B. Sturmfels, eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Science 4, American Mathematical Society, Providence, RI, 1991, pp. 81-89.
- [Da] D.E. Daykin, *A simple proof of the Kruskal-Katona theorem,* J. Comb. Theory (Series A) 17 (1974), 252-253.
- [Fr] P. Frankl, *A new short proof for the Kruskal-Katona theorem,* Discrete Math. 48 (1984), 327-329.
- [Ga] A.M. Garsia, *Combinatorial methods in the theory of Cohen-Macaulay rings,* Adv. in Math. 38 (1980), 229-266.
- [GK1] C. Greene and D. J. Kleitman, Strong *versions of Sperner's* Theorem, J. Comb. Theory (Series A) 20 (1976), 80-88.
- [GK2] C. Greene and D. J. Kleitman, *Proof techniques in the theory of finite sets,* in *Studies in Combinatorics* (G.-C. Rota, ed.), Mathematical Association of America, Washington, DC, 1978, pp. 22-79.
- [Kal] G. Kalai, *Characterization of f-vectors of families of convex sets in* \mathbb{R}^d . Part I: *Necessity of Eckhoff's conditions,* Israel J. Math. 48 (1984), 175-195.
- [Kat] G.O.H. Katona, A theorem *of finite sets,* in *Theory of Graphs* (Proc. Colloq., Tihany, 1966, P. Erdös and G. Katona, eds.), Academic Press, New York and Akadémia Kiadó, Budapest, 1968, pp. 187-207.
- [Kr] J.B. Kruskal, The *number of simplices in a complex,* in *Mathematical Optimization Techniques* (R. Bellman, ed.), University of California Press, Berkeley-Los Angeles, 1963, pp. 251-278.
- [Mu] J. Munkres, *Elements of Algebraic Topology,* Benjamin/Cummings, Menlo Park, CA, 1984.
- [Ry] H.J. Ryser, *Combinatorial Mathematics,* Mathematical Association of America, Washington, DC, 1963.
- [Stl] R. Stanley, The *Upper Bound Conjecture and Cohen-Macaulay* rings, Studies in Appl. Math. 54 (1975), 135-142.
- [St2] R. Stanley, *Balanced Cohen-Macaulay complexes,* Trans. Amer. Math. Soc. 249 **(1979), 139-157.**
- [St3] R. Stanley, *A combinatorial decomposition of acyclic simplicial complexes,* Discrete Math. 118 (1993), to appear.