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ABSTRACT

We find a decomposition of simplicial complexes that implies and sharp-
ens the characterization (due to Bjorner and Kalai) of the f-vector and
Betti numbers of a simplicial complex. It generalizes a result of Stanley,

who proved the acyclic case, and settles a conjecture of Stanley and Kalai.

1. Introduction

Let A be a finite (abstract) simplicial complex on vertex set V = {zy,...,Zn}
(i.e. , A is a collection of subsets of V such that: V C A; and, if F C G and
G € A, then F € A). Let the dimension of F € A be dim F = [F| — 1, and the
dimension of A be dimA = max{dim F: F € A}. Also let d =1+ dimA, so
the largest face of A has d vertices. Let f; = fi(A) =#{F € A: dimF =i}. In
particular, f_; = 1 for the empty set (unless A = @), fo counts the vertices of
A, and f; = 0 for i > d. The f-vector of A is f(A) = (fo,..., fa—1). The same
notion of f;(A) and the f-vector will apply in this paper to every finite collection
of sets.

For a simplicial complex A, 3;(A) = dimg H*(A; K) will denote the ith (re-
duced) Betti number of A with respect to a fixed field of coefficients K,
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where H {(A; K) is the ith reduced cohomology group of A with respect to K.
The Betti sequence of A is B(A) = (BO, .. .,ﬁd_l).

Our main result is the following combinatorial decomposition theorem for sim-
plicial complexes.

THEOREM 1.1: Any (finite) simplicial complex A can be written as a disjoint
union A = A’ U BUQQ, where:

(a) A’ is a subcomplex of A;

(b) f:(B) = Bi(A) and B is an antichain;

() A’UB is a subcomplex of A; and

(d) there exists a bijection n: A’ — Q such that for all F € A’ we have

F cn(F)and n(F)-F|=1.

Theorem 1.1 implies the complete characterization of f-vectors for simplicial
complexes with prescribed Betti numbers, which was proved by Bjérner and
Kalai [BK1]. It sharpens and generalizes results by Stanley [St3, Theorem 1.2
and Proposition 2.1] (who proved this result for acyclic simplicial complexes and
a weaker result for general simplicial complexes), and settles a conjecture made
by Kalai and Stanley [St3, Conjecture 2.2].

Combinatorial decomposition theorems which sharpen extremal combinatorial
results are of great interest in combinatorics. A famous example is the decompo-
sition of the Boolean lattice to symmetric antichains. This decomposition implies
Sperner’s theorem on the size of the largest antichain [GK1]. Another example
is an important conjecture made (separately) by Garsia [Ga, Remark 5.2] and
Stanley [St2, p. 149], which asserts that every d-dimensional Cohen-Macaulay
simplicial complex A can be written as a disjoint union of intervals [S, T} so that
dimT = d. This conjecture would sharpen Stanley’s result that the h-vector of
A is nonnegative [St1, Corollary 4.3)].

In Section 2 we will describe the Kruskal-Katona theorem, which gives a de-
scription of f-vectors of simplicial complexes, the Bjorner-Kalai theorem, which
gives a similar description for the case where the Betti numbers are prescribed,
and we will show how Theorem 1.1 implies the Bjérner-Kalai theorem. The proof
of Theorem 1.1 is given in Section 3.

2. f-vectors

The f-vector has been characterized for many subclasses of simplicial complexes,
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and for many generalizations of simplicial complexes. See [Bj] for a survey and
extensive bibliography.

For simplicial complexes, the characterization is given by the Kruskal-Katona
theorem [Kr, Kat], using the following peculiar function: Given an integer k > 1,

any integer n > 1 can be written uniquely in the form

= (1) () ()

such that ax > --- > a; > 1 > 0. Define

Fe-a(m) = (ka—kl) i (Zk——12> e (1 ?1)'

The function 8y, has the following combinatorial interpretation (see [GK2, Section
8] or [BK1, Section 2]): Define the antilexicographic ordering <4 on k-
subsets (subsets whose cardinality is k) of V as follows. Arbitrarily order the
vertices of Vasz; < --- < z,. Say S={z;, < - <z tand T = {z;, <--- <
z;, } are two k-subsets; then S <4 T if, for some ¢, we have i, < j, and i, = j,
for p > q. A collection C of k-subsets of V is compressed if S <45 T and
T € C imply S € C. Since <4y is a total ordering, there is only one compressed
collection of k-subsets of size n; call it I'. The shadow of any collection C of
k-subsets is
C={S:|S|=k-1, SCT forsomeT € C}.

Then AI7 is also compressed, and |I}| = Gx_1(n).

THEOREM 2.1 (Kruskal-Katona [Kr, Kat]): For f = (fo,..., fa—1), the follow-
ing are equivalent:

(a) f is the f-vector of a simplicial complex; and

(b) O(fr) < fr—1, forall k > 1.

Proof: The simplest proofs are due to Daykin [Da] and Frank] [Fr]. |

For further uses and generalizations of the Kruskal-Katona theorem and com-
pression, see [GK2, Section 8].

Bjorner and Kalai improved upon the Kruskal-Katona theorem by character-
izing the f-vector of a simplicial complex with prescribed Betti numbers. The

characterization utilizes near-cones.

Definition: A near-cone is a simplicial complex A containing a vertex vy (called
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the apex) with the following property: For any face F € A, ifvgo ¢ Fandw € F
then
(F - {w})u {wo} € A.

For any near-cone A with apex vp, let
B(A)={F € A: FU{w} € A},

and let
A= {F€ AI’UQ&F,FU{UQ} € A},

then
A = (v x A") U B(4),

where * denotes topological join (so vp ¥ A’ = A’ U{{vw} UF: F € A'}). Both
A’ and A’ U B(A) are subcomplexes of A. In the case B(A) = §, A is a cone.
Every F € B(A) is maximal in A, so the collection of subsets in B(A) forms an
antichain. Further, f;(B(A)) = 8;(A), which follows by the topological process
of contracting all the faces of A not in B(A) to the apex, leaving a sphere for
every face in B(A).

THEOREM 2.2 (Bjorner-Kalai [BK1, Theorem 1.1]):
For f =(fo,---, fd_l),,é = (Bo, ey Bd_l), the following are equivalent:
(a) there is a simplicial complex A such that f = f(A) and B = B(A) (for an
arbitrary field K );
(b) f is the f-vector of a simplicial complex having the homctopy type of a
wedge of, for each 1, (; spheres of dimension i;
(c) f is the f-vector of a near-cone A such that fi(B(A)) = Bi;
(d) et xe-1 = Lok (=17 (f; - B;) for k > 0; then

x-1=1, and
(1) Ok (xk + Bi) < Xk—1 forallk > 1.
An interpretation of equation (1) is
6k(dim Zk) S dimBk_l,

where Zi is the space of k-dimensional cycles ({z: 8z = 0}) and Bj_; is the
space of (k — 1)-dimensional boundaries ({b: b = dy for some y}). It is also not
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hard to see that xx = fx(A’) and xx + B = fx(A’U B), where the near-cone in
2.2(c) is A = (vo * A’)UB.

Proof: (c)=>(d) is a straightforward combinatorial argument which utilizes the
Kruskal-Katona theorem.

(d)=(c) is the direct construction of an appropriate near-cone.

(c)=(b) follows by remarks following the definition of near-cone.

(b)=>(a) is clear.

It only remains to show (a)=>(c). Apply the algebraic shifting operation to
A to obtain a new simplicial complex, A*. This operation has the remarkable
property that f(A) = f(A*) and 3(A) = B(A*), even though almost no other
structure of A is preserved. Furthermore, A* is a near-cone, which proves the

claim. There is no elementary way of describing A* in terms of A. [

Bjorner and Kalai [BK2] generalized this result to polyhedral complexes with
a proof by induction that avoids algebraic shifting altogether.

Theorem 1.1 provides a simpler proof of the key step ((a)=-(c)) of the Bjorner—
Kalai theorem, by constructing, for any simplicial complex A, a near-cone with
the same f-vector and Betti numbers as A.

Alternate proof of (a) = (c): Using the decomposition A = A’UBUS of
Theorem 1.1, let A* = (vg * A’)U B. It follows immediately that A* is a near-
cone, since A’ and A’U B are subcomplexes and B is an antichain. Also, A*
has the same Betti numbers as A, since ﬁi(A*) = fi(B) = B,—(A). Finally, A*
has the same f-vector as A because every face n(F) € Q is just replaced by
(vo* F) € (voxA’)—A’, which doesn’t change the f-vector, since |p(F)—-F|=1.

Note that any near-cone (vp * A’)U B trivially satisfies Theorem 1.1 with
7(F) = {uw} UF.

3. Proof of the main theorem

Let T be a directed graph with vertex set V. A matchingof A BCVinlisa
collection of edges such that each edge is directed from a vertex in A to a vertex
in B, and such that every vertex is incident to exactly one of the edges.

The acyclic version (im ¢ = ker @) of the following result is [St3, Lemma 1.1].

LEMMA 3.1: Let T be a directed graph on the n-element vertex set X, and let

K X be the K-vector space with basis X. Suppose there is a linear transformation
¢: KX — KX satisfying
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(a) ifx € X, then
#(z) € spang{y € X: (z,y) is an edge of T'};

and
(b) im¢ C ker¢ (ie., $* =0).
Also assume that Y is a subset of X whose image in KX/(im¢) is a basis for
K X/(im ¢) and that Z is a subset of Y whose image in K X /(ker ¢) is a basis for
K X/(ker ¢). Then there is a matching of Z and X —Y inT.

Proof: Since for any ¢: KX — KX we have dim(ker ¢) + dim(im¢) = n, it
follows | Z| = n — dim(ker ¢) = dim(im ¢) = |X — Y|. By the Marriage Theorem
(e.g., [Ry, Ch.5, Thm. 1.1]), it suffices to show that for any S C Z, say with
|S| = k, there are (at least) k vertices y1,...,yx € X — Y such that for each
1 € ¢ € k there is an z € § with (z,¥;) an edge of I'. Suppose not. Let
S = {z1,...,xx}. Then ¢(z1),...,4(zx) are linearly dependent in KX/KY,
since they are all in the span of fewer than k vertices of X — Y. Thus some linear
combination z = a;¢(z1)+- - -+ ard(z) is in KY (a; € K, not all a; = 0). Since
Y is a basis for KX/(im¢) and z = ¢(a1z1+- - - +arxx) € im ¢, it follows that
must be 0, so a1Zy + - - - + axTy € ker ¢. But x,,. ..,z are linearly independent
modulo ker ¢, and hence all a; = 0, a contradiction. |

Definition: Let A(KV) denote the exterior algebra of the vector space KV it
has a K-vector space basis consisting of all the monomials zF = Ty, N ATy,
where F = {x;,,...,%;,} C V. Let Ia be the ideal of A(KV') generated by all
{zF: F ¢ A}. The quotient algebra A[A] := A(KV)/I4 is called the exterior
face ring of A (over K). A K-vector space basis of A[A] is the set of all
face monomials ¥ where F € A; it follows that f;(A) = dimg(A[A];). The
coboundary operator §: A[A] — A[A] is then simply right multiplication by
v=2;+ - +Tn € A[A], L6, fy=yAv.

Let (-,-) be the inner product on A(K'V) such that the set of face mono-
mials forms an orthonormal basis of A[A]. Define the left interior product
L: A%V x ARV — ARV by

(w,gLf) =(uAg,f) Vu€eAV;
then

2P L2C = +26-F fFCG
10 otherwise,
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and the boundary operator 8: A[A] — A[A] is L-multiplication on the left by v,
i.e. , 9y = vLy. This last observation also follows from & and é being adjoint
with respect to (-,-), i.e.,

(u,0f) = (6w, f)

for any u € A[A)];, f € AlA]it1.
Homology and cohomology are thereby reduced to exterior algebra; this idea
was introduced by Kalai {Kal].

LEMMA 3.2: Let A be any simplicial complex with simplicial coboundary op-
erator 6: A[A] — AJA)]. If k € keré and x; is a vertex of A, then k A x; € im$.

Proof: Expand k as
k= Z crzf

with cp € K (some of the ¢p may be 0), and then let

and

Then k = k) + kg and k1 Az; =0, so
kAz; = ko Azj.

Also, since k € ker§, we have 0 =6k =k Av=ki Av+ ks Av,so
kiAv= -k Av.

We will show that k A z; = —k; Av € im 6 by showing that

(2) ((kAz;)+ (k1 Av),2F) =0 for any F € A.

Since both z; and k; are multiples of x;, equation (2) is clear if z; ¢ F. Other
wise,

((k/\x,-)+(k1/\v),:cp) ((kzl\xj)—(kg/\v),wF)
= (koA (z; — v),xp)

= 0
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because x; divides zF, but not any term of k3 nor x; — v. [ |

Bjorner and Kalai proved a similar result with a much more intuitive, topo-
logical proof. Let IkF := {G € A: GNF =, GUF € A} and stF :=
{G € A: GUF € A} denote the link and star of F, respectively.

REMARK 3.3 (Bjorner-Kalai [BK1, Remark 4.4]): For every z; € V, ifk €
ker 9, then z; Lk € imd.

Proof: First, z; Lk € kerd, and z;Lk € z; LA[A] = Aflkz;] C Afstz;]. But
stz; is acyclic (being a cone with apex z;) and (d|stz;)(y) = dy for y € stz;,
so z; Lk € ker(O|st z;) = im (d]stz;) C ima. n

This proof does not carry over to Lemma 3.2 since (§|stz;)(y) # by for y €
lkkz; C stz;. It would be very nice to find a proof of Lemma 3.2 in the spirit of
the proof of Remark 3.3.

We are now ready to prove Theorem 1.1. The proof follows the outline of
Stanley’s proof [St3, Theorem 1.2] of the acyclic case (§; = 0).

Proof of Theorem 1.1: Define the lexicographic ordering <; on k-subsets of
V as follows. Say S = {z;, <--- <z, }and T = {zj, < --- < z;,} are two
k-subsets; then S <;, T if, for some ¢, we have i, < j, and i, = j, for p < ¢.
Consider the quotient spaces @ = A[A]/(ker6), and R = A[A]/(im§). Let L
be the lexicographically least basis of Q consisting of face monomials =¥, with
respect to the ordering x; < --- < z, of the vertices of A, and let M be the
lexicographically least set of face monomials such that LU M is a basis of R.
Thus, if F € A, then zF ¢ L if and only if

(3) ef = a1z + - 4 az™ + &,

where k € kerd, i.e. , Kk Av = 0, and, for each i, we have a; € K, F; € A, and
F; <i F. Similarly, if F € A, then 2F ¢ L UM if and only if

4) tF=axP + . tax™ + (y o),

where y € A[A] and, for each i, we have a; € K, F; € A, and F; <, F. Finally,
let A’ = {F:2F € L} and B = {F: zF € M}.

First we show that A’ is a subcomplex. Suppose ¥ ¢ L and F C G. We need
to show that ¢ ¢ L. Multiply equation (3) on the left by z%—F. First note that
xG~F Ak € ker § since ker § is an ideal. Further, in A[A] we have ¢~ F A zFi =
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+2(G-F)VUF: (or 0if (G- F)NF, #0), and (G — F)UF, <, (G- F)UF =G,
so equation (3) gives & ¢ L. Thus A’ is a subcomplex. Similarly, A'UB is a
subcomplex.

Now let I" be the directed graph whose vertex set is A, and whose edges are
the pairs (F,G) with F C G € A and |G — F| = 1. Define ¢: KA — KA by
¢ = 6. By definition of the coboundary operator, ¢ satisfies all the conditions
of Lemma 3.1. We can take Z = A’ and Y = A’UB in Lemma 3.1 by the
definitions of A’ and B, and thus there is a matching 7: A’ - A — (A’UB) = Q
satisfying the conditions in (d).

Finally, we prove (b). By construction, f;(B) = ;(A). To show that B is an
antichain, suppose that zF € M and F C G. We need to show that z€ ¢ M.
Let z; € G— F, and let F’ = G — {z;}. Since A’ is a subcomplex and F ¢ A’,
it follows that F’ ¢ A’ also, so ' ¢ L and

t
4 .
F = E a;x™ + k,

=1

where k € ker 6, a; € K, and F; < F'.

Thus,
¢ = x(zF A ;)
t
= :l:(Za,-xF" /\a:j) + (kA zj)
i=1
= Z :l:aixF“U{“‘"}) + (k A zj).
Fiu{z;}eA
x; @F;
Now

FiU{l'j} <z F’U{:L‘j} =G,

and k A x; € im6 by Lemma 3.2, so it follows from equation (4) that z€ ¢ M.
[ |
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