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ABSTRACT 

We find a decomposition of simplicial complexes that implies and sharp- 

ens the characterization (due to Bj6rner and Kalai) of the f-vector and 

Betti numbers of a simplicial complex. It generalizes a result of Stanley, 

who proved the a~yclic case, and settles a conjecture of Stanley and Kalai. 

1. I n t r o d u c t i o n  

Let A be a finite (abstract) simplicial complex on vertex set V = ( X l , . . . , x n }  

(i.e. , A is a collection of subsets of V such that: V C_ A; and, if F C G and 

G E A, then F E A). Let the d i m e n s i o n  of F E A be d i rnF  = IFI - 1, and the 

d i m e n s i o n  of A be dirnA = max(di rnF:  F E A}. Also let d = 1 + dirnA, so 

the largest face of A has d vertices. Let fi = / ~ ( A )  = # i F  E A: d i rnF  = {}. In 

particular, f -1  = 1 for the empty set (unless A = 0), f0 counts the vertices ot 

A, and f~ -- 0 for i _> d. The f - v e c t o r  of A is f ( A )  = ( f 0 , . . . ,  fd-1). The same 

notion of f i (A)  and the ]-vector  will apply in this paper to every finite collection 

of sets. 

For a sirnplicial complex A, /~(A) = dirnKH~(A; K)  will denote the i t h  (re-  

d u c e d )  B e t t l  n u m b e r  of A with respect to a fixed field of coefficients K,  
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where /~i(A; K) is the ith reduced cohomology group of A with respect to K. 

The Be t t i  sequence of A is/~(A) = (~0,-..,/~d-Z)- 

Our main result is the following combinatorial decomposition theorem for sim- 

plicial complexes. 

THEOREM 1.1: A n y  (finite) simplicial complex  A can be wri t ten as a disjoint 

union A = A '  (A B (A f~, where: 

(a) A '  is a subcomplex  of/X; 

(b) f i ( B )  = ~i(/X) and B is an antichain; 

(c) A ' O  B is a subcomplex  o f / x ;  and 

(d) there exists a bijection ~1: A '  ~ ~2 such that  t'or a11 F C A '  we have 

F C 71(F) and I~?(f) - F I = 1. 

Theorem 1.1 implies the complete characterization of f-vectors for simplicial 

complexes with prescribed Betti numbers, which was proved by Bj6rner and 

Kalai [BK1]. It sharpens and generalizes results by Stanley [St3, Theorem 1.2 

and Proposition 2.1] (who proved this result for acyclic simplicial complexes and 

a weaker result for general simplicial complexes), and settles a conjecture made 

by Kalai and Stanley [St3, Conjecture 2.2]. 

Combinatorial decomposition theorems which sharpen extremal combinatorial 

results are of great interest in combinatorics. A famous example is the decompo- 

sition of the Boolean lattice to symmetric antichains. This decomposition implies 

Sperner's theorem on the size of the largest antichain [GK1]. Another example 

is an important conjecture made (separately) by Garsia [Ga, Remark 5.2] and 

Stanley [St2, p. 149], which asserts that every d-dimensional Cohen-Macaulay 

simplicial complex A can be written as a disjoint union of intervals [S, T] so that 

dim T = d. This conjecture would sharpen Stanley's result that the h-vector of 

A is nonnegative [Stl, Corollary 4.3]. 

In Section 2 we will describe the Kruskal-Katona theorem, which gives a de- 

scription of f-vectors of simplicial complexes, the BjSrner-Kalai theorem, which 

gives a similar description for the case where the Betti numbers are prescribed, 

and we will show how Theorem 1.1 implies the BjSrner-Kalai theorem. The proof 

of Theorem 1.1 is given in Section 3. 

2. f-vectors 

The f-vector has been characterized for many subclasses of simplicial complexes, 
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and for many generalizations of simplicial complexes. See [Bj] for a survey and 

extensive bibliography. 

For simplicial complexes, the characterization is given by the Kruskal-Katona 

theorem [Kr, Kat], using the following peculiar function: Given an integer k > 1, 

any integer n > 1 can be written uniquely in the form 

n =  + \ k - l ]  + " ' +  

such that  ak > " "  > ai _> i > 0. Define 

( a k )  (ak--X~ ( g_i ) 
Ok- l (n )=  k - 1  + \ k - 2 ]  + " "  + i 1 " 

The function Ok has the following combinatorial interpretation (see [GK2, Section 

8] or [BK1, Section 2]): Define the an t i l ex icograph ic  o r d e r i n g  ~AL o n  k- 

subsets (subsets whose cardinality is k) of V as follows. Arbitrarily order the 

vertices of V as xl < .-. < xn. Say S = {x~ 1 < . . .  < xik} and T = {xjl < . . .  < 

xjk } are two k-subsets; then S (AL  T if, for some q, we have iq < jq and ip = jp 

for p > q. A collection C of k-subsets of V is compres sed  if S <~AL T and 

T E C imply S E C. Since ~AL is a total ordering, there is only one compressed 

collection of k-subsets of size n; call it I x. The shadow of any collection C of 

k-subsets is 

OC = {S: [S[ = k - 1 ,  S c T f o r s o m e T E C } .  

Then 0I~ is also compressed, and IOI'~[ = Ok-l(n). 

TnEOttEM 2.1 (Kruskal-Katona [Kr, Kat]): For f = ( f o , . . . ,  fd-X), the follow- 

ing are equivalent: 

(a) f is the f-vector of a simplicial complex; and 

(b) Ok(fk) <_ fk-x, for all k > 1. 

Proo~ The simplest proofs are due to Daykin [Da] and Frankl [Fr]. | 

For further uses and generalizations of the Kruskal-Katona theorem and com- 

pression, see [GK2, Section 8]. 

BjSrner and Kalai improved upon the Kruskal-Katona theorem by character- 

izing the f-vector of a simplicial complex with prescribed Betti numbers. The 

characterization utilizes near-cones. 

Definition: A nea r - cone  is a simplicial complex A containing a vertex Vo (called 
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the apex )  with the following property: For any face F • A, if v o ¢  F and w E F 

then 

(F  - {w}) U {Co} • A. 

For any near-cone A with apex v0, let 

= {F  • A: F u {co} ¢ 

and let 

then 

A' = {F  • A: Vo ¢ F, F U (Co} • A}; 

= (co • 0 

where * denotes topological join (so v0 * A' = A' 0{{Co} 0 F: F • A'}). Both 

A' and A' 0 B(A)  are subcomplexes of A. In the case B(A)  = ~, A is a cone.  

Every F • B(A)  is maximal in A, so the collection of subsets in B(A)  forms an 

antichain. Further, f i (B(A))  = ~i(A), which follows by the topological process 

of contracting all the faces of A not in B(A)  to the apex, leaving a sphere for 

every face in B(A).  

THEOREM 2.2 (BjSrner-Kalai [BK1, Theorem 1.1]): 

For f = ( fo , - . . ,  fd-1), ~ = (~0, . . . ,  L - l ) ,  the following are equivalent: 

(a) there is a simplicial complex A such that f = f ( A )  and ~ ---- ~(A) (for an 

arbitrary field K ); 

(b) f is the f-vector of a simplicial complex having the homotopy type of a 

wedge of, for each i, ~i spheres of dimension i; 

(c) f is the f-vector of a near-cone A such that f i (B(A))  = ~i; 

(d) let Xk-1 = ~ j>k ( - -1 ) J - k ( f j  -- ~j) for k >_ O; then 

X-1 = 1, and 

(1) O~(Xk + ~k) <_ Xk-1 for all k >_ 1. 

An interpretation of equation (1) is 

Ok (dim Zk) <_ dim Bk - 1, 

where Zk is the space of k-dimensional cycles ({z: Oz = 0}) and Bk-1 is the 

space of (k - 1)-dimensional boundaries ({b: b = Oy for some y}). It is also not 
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hard to see that )/k = fk(A')  and ~(k + ~k = fk( A' 0 B), where the near-cone in 

2.2(c) is A = (v0 * A') 0 B. 

Proof: ( c )~ (d )  is a straightforward combinatorial argument which utilizes the 

Kruskal-Katona theorem. 

(d)==>(c) is the direct construction of an appropriate near-cone. 

( c )~ (b )  follows by remarks following the definition of near-cone. 

(b )~ (a )  is clear. 

It only remains to show (a)~(c) .  Apply the algebraic shifting operation to 

A to obtain a new simplicial complex, A*. This operation has the remarkable 

property that  f ( A )  = f (A*)  and f)(A) = ~(A*), even though almost no other 

structure of A is preserved. Furthermore, A* is a near-cone, which proves the 

claim. There is no elementary way of describing A* in terms of A. | 

Bjhrner and Kalai [BK2] generalized this result to polyhedral complexes with 

a proof by induction that  avoids algebraic shifting altogether. 

Theorem 1.1 provides a simpler proof of the key step ((a)=~(c)) of the Bjhrner- 

Kalai theorem, by constructing, for any simplicial complex A, a near-cone with 

the same f-vector  and Betti  numbers as A. 

Alternate proof of (a) ~ (c): Using the decomposition A = A' 0 B 0 ~ of 

Theorem 1.1, let A* = (v0 * A ' ) 0  B. It follows immediately that A* is a near- 

cone, since A' and A' 0 B are subcomplexes and B is an antichain. Also, A* 

has the same Betti  numbers as A, since ~i(A*) = f~(B) = ~i(A). Finally, A* 

has the same f-vector  as A because every face ~(F) E ~ is just replaced by 

(vo * F)  C (Vo* A') - A', which doesn't change the f-vector,  since I~](F) - F I = 1. 

Note that any near-cone (Vo * A')(J B trivially satisfies Theorem 1.1 with 

~?(F) = {Vo} 0 F.  

3. P r o o f  o f  t h e  m a i n  t h e o r e m  

Let F be a directed graph with vertex set V. A m a t c h i n g  of A, B C_ V in F is a 

collection of edges such that  each edge is directed from a vertex in A to a vertex 

in B, and such that  every vertex is incident to exactly one of the edges. 

The acyclic version (im ¢ = ker ¢) of the following result is [St3, Lemma 1.1]. 

LEMMA 3.1: Let F be a directed graph on the n-element vertex set X ,  and let 

K X  be the K-vector space with basis X .  Suppose there is a linear transformation 

¢: K X  ~ K X  satisfying 
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(a) i f  x 6 X ,  then 

¢(x) 6 spanK{Y 6 X: (x, y) is an edge of F}; 

and 

(b) im¢ C_ ker¢ (i.e., ¢ 2 =  0). 

Also  assume tha t  Y is a subse t  o f  X whose image in K X / ( i m ¢ )  is a basis for 

K X / ( i m ¢ )  and that Z is a subset o f  Y whose image in K X / ( k e r ¢ )  is a basis for 

K X / ( k e r @ ) .  Then  there is a match ing  o f  Z and X - Y in F. 

Proo~ Since for any ¢: K X  -~ K X  we have dim(ker ¢) + dim(im ¢) = n, it 

follows IZI = n -d im(ke r  ¢) = dim(im¢) = I X - Y I .  By the Marriage Theorem 

(e.g., [Ry, Ch.5, Thin. 1.1]), it suffices to show that for any S C_ Z, say with 

ISI = k, there are (at least) k vertices Y l , . . . , Y k  6 X - Y  such that  for each 

1 < i _< k there is an x 6 S with (x,y~) an edge of F. Suppose not. Let 

S -- { x b . . . , x k } .  Then ¢ (x l ) , . . . , ¢ (xk )  are linearly dependent in K X / K Y ,  

since they are all in the span of fewer than k vertices of X - Y. Thus some linear 

combination x = al~b(Xl)+.. " + a k ¢ ( x k )  is in K Y  (ai 6 K ,  not all ai = 0). Since 

Y is a basis for K X / ( i m ¢ )  and x -- ¢ ( a l x l  + . . .  + a k x k )  6 im¢, it follows that x 

must be 0, so a l x l  + . ' .  + akxk  6 ker¢. But x l , . . .  ,xk are linearly independent 

modulo ker ¢, and hence all ai = O, a contradiction. I 

Definition: Let A(KV) denote the exterior algebra of the vector space K V ;  it 

has a K-vector space basis consisting of all the monomials x F :-- x~ 1 ^ . . .  h xik 

where F = { x h , . . . , x ~  } C_ V. Let D, be the ideal of A(KV) generated by all 

{xF: F ¢~ A}. The quotient algebra A[&] := A ( K V ) / I A  is called the ex te r io r  

face r ing  of A (over K). A K-vector space basis of A[A] is the set of all 

face m o n o m i a l s  x F where F E A; it follows that  f i(A) = dimK(A[A]i). The 

coboundary operator 6: A[A] -+ A[A] is then simply right multiplication by 

v = xl + . . ' +  xn 6 A[A], i .e. ,  by--  y A v. 

Let (.,-) be the inner product on A(KV) such that  the set of face mono- 

rnials forms an orthonormal basis of A[A]. Define the left  in te r io r  p r o d u c t  

L: h d v  > Ak+dv -+ A~V by 

(u, gLf) ---- (uAg,  f )  Vu 6 AV; 

then 
:t:x G - F  i f F C G  

X F L X G = 0 otherwise, 
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and the boundary operator 0: A[A] ~ A[A] is L-multiplication on the left by v, 

i.e. , Oy = v L y. This last observation also follows from 0 and 5 being adjoint 

with respect to (.,-), i.e. , 

(u, of)  : (~u, f )  

for any u E A[A]i, f E A[A]~+I. 

Homology and cohomology are thereby reduced to exterior algebra; this idea 

was introduced by Kalai [Kal]. 

LEMMA 3.2: Let A be any simplicial complex with simplicial coboundary op- 

erator/f: A[A] --, A[A]. I f  k E ker~ and xj  is a vertex o f ^ ,  then k A x j  • im~f. 

Proof." Expand k as 

k = E cFxF 
FEA 

with CF E K (some of the CF may be 0), and then let 

kl ~ E cFxF 
F: xjEF 

and 

k2 = E cFxF* 
F: x~ ~F 

T h e n k = k l + k 2 a n d k l A x j = 0 ,  so 

k A x j  : k 2 A x j .  

Also, since k E ker 6, we have 0 = ~k = k A v = kl A v + k2 A v, so 

kl A v ---- -k2 A v. 

We will show that  k ^ xj = - k l  ^ v E im ~ by showing that  

(2) ((k ^ x~) + (kl ^ v), x F) = 0 for any F E A. 

Since both xj and kl are multiples of xj ,  equation (2) is clear if xj ¢ F.  Other 

wise, 

((k ^ xj) -[- (k 1 ^ v),x F) = ( ( k ~ ^ x j ) - ( k 2 A v ) , x  F) 

= (ks ^ (x j  - v) ,  z F) 

= 0 
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because xj divides x F, but not any term of k2 nor xj - v. | 

BjSrner and Kalai proved a similar result with a much more intuitive, topo- 

logical proof. Let l k F  := {G E A: G N F  = 0, G U F  E A} and s t F  := 

{G E A: G U F E A} denote the l ink and s t a r  of F,  respectively. 

REMARK 3.3 (BjSrner-Kalai [BK1, Remark 4.4]): For every x j  E V ,  i f  k E 

ker c9, then xj L k E im 0. 

Proof." First, xj Lk e ker0, and x j  L k  E x j  LA[A] = A[lkxj] C_ A[stxj]. But 

s t x j  is acyclic (being a cone with apex xj)  and ( O l s t x j ) ( y )  = Oy for y E s tx j ,  

so x j  L k  e k e r ( O i s t x j )  = i m ( O l s t z j )  C_ im0. | 

This proof does not carry over to Lemma 3.2 since (61s t x j ) ( y )  # 6y for y E 

lkxj  C st xj. It would be very nice to find a proof of Lemma 3.2 in the spirit of 

the proof of Remark 3.3. 

We are now ready to prove Theorem 1.1. The proof follows the outline of 

Stanley's proof [St3, Theorem 1.2] of the acyclic case (/~ = 0). 

P r o o f  o f  Theorem 1.1: Define the l ex i cog raph ic  o r d e r i n g  --<L o n  k-subsets of 

V a s  follows. Say S = {xi~ < - . -  < xi~} a n d T  = {xj~ < .-.  < xjk} are two 

k-subsets; then S <L T if, for some q, we have iq < jq and ip = jp for p < q. 

Consider the quotient spaces Q = A[A]/(ker~5), and R = A[A]/(im6). Let L 

be the lexicographically least basis of Q consisting of face monomials x F, with 

respect to the ordering Xl < - '-  _< x= of the vertices of A, and let M be the 

lexicographically least set of face monomials such that L 0 M is a basis of R. 

Thus, if F E A, then x F ~ L if and only if 

(3) x F = a l x  F~ + . . .  + a t x  F' + k, 

where k E ker6, i.e. , k A v = 0, and, for each i, we have al E K,  F~ E A, and 

F~ <L F. Similarly, if F E A, then x F ~ L 0 M if and only if 

(4) x F = a l x  F1 + . . .  + a t x  F~ + (y/~ v), 

where y E A[A] and, for each i, we have ai E K,  F~ E A, and F~ <L F. Finally, 

let A '  = {F: x F E L}  and B - -  {F: x F E M } .  

First we show that  A I is a subcomplex. Suppose x F ¢[ L and F C G. We need 

to show that x c ~ L. Multiply equation (3) on the left by x G-F .  First note that  

x G - F  h k E ker6 since ker6 is an ideal. Further, in A[A] we have x c - F  A x F~ = 
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=kx(C-F) 0 F, (or 0 if (G - F)  n F~ ¢ 0), and (G - F)  0 F~ <L (G - F)  0 F = G, 

so equation (3) gives x c ~ L. Thus A ~ is a subcomplex. Similarly, A I 0 B is a 

subcomplex. 

Now let F be the directed graph whose vertex set is A, and whose edges are 

the pairs (F ,G)  w i t h F c  G E  A and I G - F [  = 1. D e f i n e ¢ : K A  ~ K A  by 

¢ = & By definition of the coboundary operator, ¢ satisfies all the conditions 

of L e m m a 3 . 1 .  We can take Z = A ~ and Y = A I O B  in Lemma 3.1 by the 

definitions of A ~ and B, and thus there is a matching ~: A' --. A -- (A ~ 0 B) = ~-/ 

satisfying the conditions in (d). 

Finally, we prove (b). By construction, f i ( B )  -- ~i(A). To show that  B is an 

antichain, suppose that  x F E M and F C G. We need to show that  x C ~ M. 

Let xj E G - F ,  and let F '  = G - { x j ) .  Since A ~ is a subcomplex and F ¢~ A', 

it follows that  F ~ g A ~ also, so x F' ¢ L and 

t 

x F' = ~ a i x  F~ -k k ,  

i=l  

where k E ker/f, ai E K ,  and Fi <L F r. 

Thus, 

Now 

X G = +(x F' ^x j )  
t 

i=l  

F~u{~j)eA 
~j ~F~ 

Fi U {xj} <L F '  U {xj} = G, 

and k A x j  E im ~ by Lemma 3.2, so it follows from equation (4) tha t  x G ~ M. 

I 
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